LAST NAME:	FIRST NAME:	CIRCLE:	Akbar 4pm	Coskunuzer 8:30am
		Coskunuzer 10am	Zweck 1pm	

MATH 2415 [Spring 2023] Exam I

No books or notes! **NO CALCULATORS!** Show all work and give **complete explanations**. Don't spend too much time on any one problem. This 75 minute exam is worth 75 points. **Your points for each problem will be recorded on the top of the second page.**

- (1) [12 pts] Let $\mathbf{u} = \mathbf{i} + 5\mathbf{j} 2\mathbf{k}$, $\mathbf{v} = 3\mathbf{i} \mathbf{j}$, and $\mathbf{w} = 5\mathbf{i} + 9\mathbf{j} 2\mathbf{k}$.
- (a) Find the vector projection of \mathbf{v} onto \mathbf{u} .

(b) Find the volume of the parallelepiped determined by the vectors \mathbf{u} , \mathbf{v} and \mathbf{w} .

		1	/12	2	/12	3	/13	4	/12	5	/14	6	/12	Т	/75
--	--	---	-----	---	-----	---	-----	---	-----	---	-----	---	-----	---	-----

- (2) [12 pts] Consider the three points P = (1, 0, 1), Q = (-2, 1, 3), and R = (4, 2, 5).
- (a) Find a unit vector that is perpendicular to the plane containing these three points.

(b) Find the area of the triangle PQR.

(3)	[13	pts
(0)	10	Pus

(a) Suppose that two lines, L_1 and L_2 , intersect in a point. Draw a schematic diagram that illustrates why there is exactly one plane \mathcal{P} than contains both L_1 and L_2 . Write a brief explanation of your diagram.

For the rest of the problem suppose that L_1 is the line parametrized by $\mathbf{r}_1(t) = (2t+1, 3t-2, t+1)$ and L_2 is the line parametrized by $\mathbf{r}_2(s) = (s+1, 2s-3, 3s-4)$.

(b) Show that the point $\mathbf{p} = (3, 1, 2)$ lies on both lines.

(c) Find an equation of the form Ax + By + Cz = D for the plane \mathcal{P} than contains both L_1 and L_2 .

- (4) [12 pts]
- (a) Sketch the surface whose equation in spherical coordinates, (ρ, θ, ϕ) , is $\phi = \pi/4$.

(b) Convert the equation $\phi=\pi/4$ to rectangular coordinates.

(c) Convert the equation $\phi=\pi/4$ to cylindrical coordinates.

- (5) [14 pts]
- (a) Sketch the surface $x^2 + z^2 2y^2 = 4$. **Hint:** You may find it helpful to use cylindrical coordinates (r, θ, y) (instead of the usual (r, θ, z)).

(b) Make *labelled* sketches of the traces (slices) of the surface $x=z^2-4y^2$ in the planes $z=0,\,y=0,$ and x=k, for k=0,1,-2. (You do not need to sketch the surface itself.)

- (6) [12 pts] Let C be the curve parametrized by $\mathbf{r}(t) = (3\sin t, 4, 3\cos t)$.
- (a) Show that C lies on a cylinder and on a sphere.

(b) Find a parametrization for the tangent line to C at the point where $t=\pi/3$.