LAST NAME:	FIRST NAME:	CIRCLE:	Coskunuzer 8:30am	Ahsan 1pm
			Ahsan 2:30pm	Zweck 4pm

MATH 2415 [Fall 2024] Exam II

No books or notes! **NO CALCULATORS!** Show all work and give **complete explanations**. This 75 minute exam is worth 75 points. **Points will be recorded on the top of the second page.**

(1) [12 pts] Suppose that $z = f(x,y) = \cos(2x+3y)$ where x = x(t) and y = y(t). If $x(0) = -\pi/4$, $y(0) = \pi/3$, x'(0) = 5, and y'(0) = 4, find $\frac{dz}{dt}$ at t = 0.

-1.1 -1.2 -2.2 -1.3 -3.3 -1.3 -4.4 -1.2 -5.5 -1.3 -6.5 -1.2 -1.2	1 / 12 3	/ 131	3 /13	4 /12	5 /12	6 /12	T /75
--	------------	-------	-------	-------	-------	-------	-------

- (2) [13 pts] Let $f(x,y) = x^2 + \cos y + 2ye^x$ and let $\mathbf{x}_0 = (0, \frac{\pi}{2})$.
 - (a) Find the gradient of f at \mathbf{x}_0 .

(b) Find the directional derivative of f at \mathbf{x}_0 in the direction of the vector $\mathbf{v} = (4,3)$.

(c) Find the minimum (i.e. most negative) rate of change of f at \mathbf{x}_0 and the direction in which it occurs.

(d) Which of the following vectors (if any) are tangent to the curve $f(x, y) = \pi$ at the point \mathbf{x}_0 : $\mathbf{u} = (1, \pi)$, $\mathbf{v} = (1, -\pi)$, and $\mathbf{w} = (2\pi, 2)$. Explain!

(3) [13 pts] Find and classify all critical points of the function $f(x,y) = y^3 - 12y + 3x^2y + 3x^2$.

- (4) [12 pts]
- (a) Suppose $f_{xx}(0,0) = -1$, $f_{yy}(0,0) = 2$ and $f_{xy}(0,0) = 3$. Which would you expect to be larger (more positive) and why:
 - (i) $f_y(0,0)$ or $f_y(0,0.1)$?

(ii) $f_x(0,0)$ or $f_x(0,0.1)$?

(b) Is there a function z = f(x, y) so that $\frac{\partial f}{\partial x} = 2x \cos y$ and $\frac{\partial f}{\partial y} = x^2 \sin y$? Explain!

(5)	[13	ptsl	Consider th	ne parametr	ized surface	(x, y, z)	$= \mathbf{r}(u, v)$) = ($\sqrt{2}\cos u.v.$	$\sqrt{2}\sin u$).
- (9)	110	Publ	Communication of	ic parametr.	izea sarrace	(x, y, \sim)	$-\mathbf{I}(u,v)$) — (v 2 cos a, c,	v 2 5111 a).

(a) Find an equation of the form F(x, y, z) = 0 for this surface.

(b) Find an equation of the tanget plane to the surface at the point $\mathbf{r}(\frac{\pi}{4},1)$. Write your answer in the form ax + by + cz + d = 0.

(6) [12 pts] Use the Method of Lagrange Multipliers to find the absolute maximum and ab of the function $f(x,y) = 2x^2 + 3y^2$ subject to the constraint $x^2 + y^2 = 1$.	solute minimum