LAST NAME:	FIRST NAME:	CIRCLE:	Coskunuzer 8:30am	Ahsan 1pm
			Ahsan 2:30pm	Zweck 4pm

MATH 2415 [Fall 2024] Exam I

No books or notes! **NO CALCULATORS!** Show all work and give **complete explanations**. This 75 minute exam is worth 75 points. **Points will be recorded on the top of the second page.**

- (1) [12 pts] Let $\mathbf{u} = \langle 2, 1, -3 \rangle$ and $\mathbf{v} = \langle -1, 2, 1 \rangle$.
- (a) Find the scalar projection of ${\bf u}$ onto ${\bf v}.$

(b) Find the vector projection of \mathbf{v} onto \mathbf{u} .

(c) Find a unit vector orthogonal to both ${\bf u}$ and ${\bf v}$.

1 /19	9	/12	3 /1	2 1	/19	5	/12	6	/19	т /	75
1 /12		/ 13	0 /1	0 4	/ 12	0	/ 13	U	/ 12	1 /	10

- (2) [13 pts] Consider the points A = (3, -1, 1), B = (4, 2, -1) and C = (2, 3, -3). Let AB and AC are two adjacent sides of a parallelogram ABCD.
- (a) Find the coordinates of the point D.

(b) Find the area of the parallelogram ABCD.

(c) Consider the point E = (4, -5, 5). Show that the vector \overrightarrow{AE} lies in the same plane as the parallelogram ABCD.

(3)	[13	pts]	Let	\mathcal{P}	be th	e plane	through	the	point	A =	(1, 0, 2)	that	is	perpendici	ular	to	the	line	with
para	ame	teriza	ation	r ($(t) = \mathbf{c}$	$\mathbf{q} + t\mathbf{v} =$	-(-1+3)	$t)\mathbf{i} +$	-(4-2)	(2t)j +	$4t\mathbf{k}$.								

(a) Draw a schematic diagram showing the relationship between the plane and the line. Include the point, A, and the vectors, \mathbf{q} and \mathbf{v} in your sketch.

(b) Find an equation of the form Ax + By + Cz = D for the plane, \mathcal{P} .

(c) Find a parameterization of the plane, \mathcal{P} .

(4)	112	nts

- (4) [12 pts] (a) Let P be the point with rectangular coordinates $(x,y,z)=(-1,1,\sqrt{2}).$
- (i) Find the cylindrical coordinates of ${\cal P}.$

(ii) Find the spherical coordinates of P.

(b) Convert the equation $\phi = \pi/4$ in spherical coordinates (ρ, θ, ϕ) , into an equation involving cylindrical coordinates (r, θ, z) .

(5)	[13 pts]	Let	(x, y, z)	$\mathbf{r}(t)$	$= (t^2)$	$+3t. e^{2t}$	$(\sin t)$ h	e the	position	of a	particle at t	ime t .

(a) Find the velocity vector of the particle at time t.

(b) Find the speed of the particle at time t = 0.

(c) Find a parametrization for the tangent line to the particle's motion at the point where t = 0.

(6) [12 pts] Make labelled sketches of the traces (slices) of the surface $z^2 = 1 + y^2 + 4x^2$ in the planes x = 0, y = 0, and z = k for k = 0, ± 1 , ± 2 . Be sure to include any asymptotes and intercepts in your sketches. Then make a labelled sketch of the surface.