LAST NAME:	FIRST NAME:	CIRCLE:	Khoury 5:30pm	Coskunuzer 8:30am
		Coskunuzer 11:30am	Zweck 1pm	Zweck 4pm

1	/10	2	/10	3	/10	4	/10	5	/10		
6	/10	7	/10	8	/10	9	/10	10	/10	Т	/100

MATH 2415 Final Exam, Fall 2023

No books or notes! **NO CALCULATORS! Show all work and give complete explanations**. This 2 hours 45 mins exam is worth 100 points.

(1) [10 pts] Find an equation of the form Ax + By + Cz = D for the plane containing the points (0, 1, 1), (1, 0, 1), and (1, 1, 0). Which of the following points lies on this plane: P = (2, -1, 3), Q = (3, -4, 3).

- (2) [10 pts]
- (a) Find the volume of the parallelipiped determined the the vectors $\mathbf{u} = (1, 4, 2)$, $\mathbf{v} = (-1, 1, 4)$ and $\mathbf{w} = (5, 1, 2)$.

(b) Make a sketch that shows how to project the vector $\mathbf{v} = \mathbf{i}$ onto the vector $\mathbf{w} = \mathbf{i} + \sqrt{3}\mathbf{j}$. Use your sketch to find the component of \mathbf{v} in the direction \mathbf{w} .

- (3) [10 pts] (a) Sketch the surface $x^2+y^2-z^2=2$ for $-\sqrt{2}\leq z\leq \sqrt{2}.$

(b) Show that the line through the point (1,1,0) in the direction of the vector $(-1,1,\sqrt{2})$ lies on the surface in (a).

(4) [10 pts] Find and classify all critical points of the function

$$f(x,y) = 3x^2y - 3y + y^3$$

(5) [10 pts] Evaluate the double integral $\int_{x=0}^{x=1} \int_{y=\sqrt{x}}^{y=1} \sqrt{y^3 + 1} \, dy dx$.

(6) [10 pts] Let E be the solid in the first octant that is bounded by the planes x+z=2 and 2y+z=2. Calculate $\iiint_E z \, dV$. Hint: It may be helpful to sketch E.

	_	
(7)	[10	pts
(1)	\perp I U	DLS
\ · /	1-0	~~~

(7) [10 pts] (a) Find $\iiint_E \sqrt{x^2 + y^2} \, dV$ where E is the solid above the xy-plane, below the paraboloid $z = 9 - x^2 - y^2$ and outside the cylinder $x^2 + y^2 = 4$.

(b) Use a triple integral in spherical coordinates to find the volume of the sphere of radius R.

(8) [10 pts] Use the change of variables theorem to evaluate $\iint_R (x+y)^2 e^{x-y} dxdy$ where R is the parallel-ogram bounded by $x+y=2, \ x+y=5, \ x-y=-2$ and x-y=1.

(9) [10 pts]

(a) Let C be the semicircle $x^2 + y^2 = 9$ with $y \ge 0$ oriented counter-clockwise and let \mathbf{F} be the vector field $\mathbf{F} = -y\mathbf{i} + x\mathbf{j}$. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

(b) Let C be the curve $y = \sqrt[3]{x+1}$ from (-1,0) to (0,1). Evaluate

$$\int_C (2xy+3)dx + (x^2+10y)dy$$

(10) [10 pts] Let D be the triangular domain with vertices (0,0),(0,4) and (2,4). Let C be the boundary of D, oriented counter clockwise. Evaluate

$$\int_C (\sqrt{x^3 - 1} + 2xy^2) dx + (x^2y - e^y) dy.$$