| LAST NAME: | | | | | FIRST NAME: | | | | CIRCLE: | | | Coskunuzer
8:30am | | Dahal
11:30am | |------------|-----|---|-----|---|-------------|---|-----|-----------------|---------|----|-----------|----------------------|-----------|------------------| | | | | | | | | | Dahal
5:30pm | | Zw | Zweck 1pm | | Zweck 4pm | | | 1 | /12 | 2 | /12 | 3 | /12 | 4 | /15 | 5 | /12 | 6 | /12 | Т | /75 | | MATH 2415 [Fall 2022] Exam I, Sep 30th No books or notes! **NO CALCULATORS!** Show all work and give **complete explanations**. Don't spend too much time on any one problem. This 75 minute exam is worth 75 points. - (1) [12 pts] Let $\mathbf{u} = 4\mathbf{i} + 3\mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} \mathbf{j} 2\mathbf{k}$. - (a) Find the scalar projection of \mathbf{u} onto \mathbf{v} . (b) Find the vector projection of \mathbf{v} onto \mathbf{u} . (c) Find the angle between \mathbf{u} and \mathbf{v} . [Your answer should be in terms of an inverse trigonometric function.] - (2) [12 pts] Let $\mathbf{u} = (3, 0, -2)$ and $\mathbf{v} = (-4, 1, 2)$. - (a) Find a vector \mathbf{w} that has length one and is perpendicular to both \mathbf{u} and \mathbf{v} . (b) Find the volume of the parallelepiped generated by \mathbf{u} , \mathbf{v} and $\mathbf{k} = (0, 0, 1)$. - (3) [12 pts] Let C be the curve parametrized by $\mathbf{r}(t) = \langle \cos t, \sin t, \ln(\cos t) \rangle$. - (a) Find a parametrization of the line tangent to the curve, C, when $t = \frac{\pi}{4}$. (b) Show that the length of the segment of the curve, C, from t=0 to $t=\frac{\pi}{4}$ is $L=\int_0^{\pi/4}\sec t\,dt$. - (4) [15pts] - (a) Parametrize the curve of intersection of the surfaces $x = y^2 z^2$ and $y^2 + z^2 = 9$. (b) Let P be the point with spherical coordinates $(\rho, \theta, \phi) = (4, -\frac{\pi}{4}, \frac{\pi}{3})$. Find the rectangular coordinates of P. (c) Identify and sketch the surface which is given in cylindrical coordinates by the equation $z^2 - r^2 = 4$. (5) [12 pts] (a) Let P be the plane parametrized by $\mathbf{r}(s,t)=(1+2s-4t,3s+t,6-t)$. Find an equation of the form Ax+By+Cz=D for the plane, P. (b) Consider the lines, L_1 , L_2 , and L_3 parametrized by $L_1: \mathbf{r}_1(t) = (2+5t, -1+4t, t), \qquad L_2: \mathbf{r}_2(t) = (2+3t, 3+4t, 1-t), \qquad L_3: \mathbf{r}_3(t) = (5+3t, 2-4t, 3+t).$ Let \mathcal{P} be a plane that is perpendicular to L_1 . Could \mathcal{P} contain the line L_2 ? Could \mathcal{P} contain the line L_3 ? (6) [12 pts] Make a labelled sketch of the traces (slices) of the surface $$x^2 - y^2 + 4z^2 = 0$$ in the planes $x=0,\,z=0,$ and y=k for $k=0,\,\pm 1,\,\pm 2.$ Then make a labelled sketch of the surface.