LAST NAME:				H	FIRST NAME:			CIRCLE:		Eydelzon Cosl		Coskunuzer	
								Dahal		Zwe	ck 1pm		Zweck 4pm
1	/10	2	/10	3	/10	4	/10	5	/10				
6	/10	7	/10	8	/10	9	/10	10	/10	Т		/100	

MATH 2415 Final Exam, Fall 2021

No books or notes! **NO CALCULATORS! Show all work and give complete explanations**. This 2 hours 45 mins exam is worth 100 points.

- (1) [10 pts]
- (a) Find an equation of the form Ax + By + Cz = D for the plane that goes through the point (5, -1, 0) and is perpendicular to the line with parameterization $(x, y, z) = \mathbf{r}(t) = (1 + 2t, 3 7t, -2 + 3t)$.

(b) Let ${\bf u}$ and ${\bf v}$ be two unit vectors. What are the possible angles between ${\bf u}$ and ${\bf v}$ if $|{\bf u}\times{\bf v}|=\frac{1}{2}$?

(2)	[10 pts]	Let $\mathbf{u} =$	$\langle 4, 2, -2 \rangle$,	$\mathbf{v} = \langle 1, -1 \rangle$	$-1,3\rangle$ and	$\mathbf{w} =$	$\langle 1, -1, 1 \rangle$
-----	----------	--------------------	------------------------------	--------------------------------------	-------------------	----------------	----------------------------

(a) Find the vector projection of \mathbf{v} onto \mathbf{w} .

(b) Find the area of triangle determined by the vectors \mathbf{u} and \mathbf{v} .

(c) Determine the volume of parallelepiped determined by the vectors $\mathbf{u}, \mathbf{v},$ and $\mathbf{w}.$

- (3) [10 pts]
- (a) Evaluate the double integral

$$\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} \cos(x^4) \, dx \, dy.$$

(b) Evaluate the line integral $\int_C xe^{yz} ds$, where C is the line segment from (0,0,0) to (1,2,3).

(4) [10 pts] Let S be the surface with parametrization

$$(x,y,z) \ = \ \mathbf{r}(\phi,\theta) \ = \ (\sin\phi\cos\theta, 2\sin\phi\sin\theta, 3\cos\phi), \qquad 0 \le \phi \le \pi, \ 0 \le \theta \le 2\pi.$$

(a) Show that S is an ellipsoid. Hint: Find an equation of the form F(x, y, z) = 0 for this surface by eliminating ϕ and θ from the equations for x, y, and z above.

(b) Calculate a normal vector to the ellipsoid at the point where $(\phi, \theta) = (\pi/4, \pi/3)$.

(5) [10 pts] Use the method of Lagrange multipliers to find the absolute maximum and absolute minimum of the function $f(x,y) = x^2 + y^2$ on the ellipse $(x+1)^2 + 3y^2 = 4$.

(6) [10 pts] Let E be the solid in the first octant bounded by the surfaces z=y and $y=1-x^2$. (Recall that the first octant is where $x\geq 0,\,y\geq 0,\,z\geq 0$.) Evaluate

$$\iiint_E xz\,dV.$$

(7) [10 pts] Let E be the solid bounded by the surfaces $z=2\sqrt{x^2+y^2}$ and $z=x^2+y^2$. Evaluate the integral

$$\iiint_E \sqrt{x^2 + y^2} \, dV.$$

(8) [10 pts] Let R be the domain bounded by the lines y=0, y=3, y=2x-1, and y=2x-4. Use the change of variables u=2x-y and v=y to evaluate

$$\iint\limits_R \frac{\cos y}{(2x-y)^2} \, dA.$$

(9) [10 pts] Let $\mathbf{F}(x,y) = \sin y \,\mathbf{i} + (x\cos y - \sin y) \,\mathbf{j}$. Verify that the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path. Find a potential function for \mathbf{F} and use it to find $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is any curve from (2,0) to $(1,\pi)$.

