LAST NAME:				FIRST	FIRST NAME:			CIRCI	CIRCLE:		Eydelzon		Coskunuzer		
									Dał	nal	Zw	reck 1	pm	Zwec	ek 4pm
1	/10	2	/12	3	/12	4	/8	5	/9	6	/12	7	/12	Т	/75

MATH 2415 [Fall 2021] Exam II, Oct 29th

No books or notes! **NO CALCULATORS!** Show all work and give **complete explanations**. Don't spend too much time on any one problem. This 75 minute exam is worth 75 points.

- (1) [10 pts]
- (a) Suppose that w = f(x, y), where x = g(s, t) and y = h(s, t). Write the chain rule formula for $\frac{\partial w}{\partial s}$.

(b) Let $w = \sin(x^2 + y^2)$, where $x = s^2t$, $y = st^2$. Use your answer to (a) to find $\frac{\partial w}{\partial s}$ at (s, t) = (-1, 2).

(2	2) [12	pts]	Let	z =	f(x,	y) =	$=\sqrt{9}$	+	$\overline{x^2y^2}$

(a) Find an equation of the form z = Ax + by + C for the tangent plane to the surface z = f(x,y) at a point where x = 2 and y = 2.

(b) Use linear approximation to approximate the value of f(2.1, 1.8).

												0
1	(3)	[19	ntal	Let	f(x)	21)	_	(m	1 1	1 \	2c - x	,2
١	(\mathbf{o})	114	Prop	Let	I(u)	$, y_{i}$	_	(u)	┰ -	L)y	e	

(a) Calculate the directional derivative of f at the point (x,y)=(0,1) in the direction of the vector $\mathbf{v}=-\mathbf{i}+\mathbf{j}$.

(b) What is the direction of steepest ascent at (x, y) = (0, 1), and what is the rate of change of f in that direction?

(c) Let C be the level curve f(x,y)=1. Find the slope of the tangent line to C at the point (x,y)=(0,1).

(4) [8 pts] Show that the function $f(x,t) = e^{-t} \cos\left(\frac{x}{2}\right)$ satisfies heat equation $f_t = 4f_{xx}$.

(5) [9 pts] Select the answer that is a parametrization of the double cone $x^2 + y^2 = z^2$. Explain!!

(I)
$$(x, y, z) = \mathbf{r}(u, v) = (u, \cos v, \sin v)$$
 for $-\infty < u < \infty$ and $0 \le v \le 2\pi$

(II)
$$(x, y, z) = \mathbf{r}(u, v) = (u, v, \sqrt{u^2 + v^2})$$
 for $-\infty < u < \infty$ and $-\infty < v < \infty$

(III) $(x, y, z) = \mathbf{r}(u, v) = (u \cos v, u \sin v, u)$ for $-\infty < u < \infty$ and $0 \le v \le 2\pi$

(6) [12 pts] Find and classify all critical points of the function $f(x,y) = x^3 - 6xy + y^2$.

(7) [12 pts] Find the absolute maximum and absolute minimum of the function $f(x,y) = x^3 - 6xy + y^2$ on the rectangle $0 \le x \le 1$, $0 \le y \le 4$. [You may use your answer to Question (6).]