LAST NAME:			FIRST NA	FIRST NAME:			CIRCLE:		Eydelzon		Coskunuzer
						Dah	nal	Zw	eck 1	pm	Zweck 4pm
1	/12 2	/12 3	/13 4	/12	5	/13	6	/13	Т	/75	

MATH 2415 [Fall 2021] Exam I, Oct 1st

No books or notes! **NO CALCULATORS!** Show all work and give **complete explanations**. Don't spend too much time on any one problem. This 75 minute exam is worth 75 points.

- (1) [12 pts] Let $\mathbf{u} = -\mathbf{i} + 2\mathbf{j} 3\mathbf{k}$ and $\mathbf{v} = 5\mathbf{i} + 2\mathbf{j}$
- (a) Find the vector projection of \mathbf{u} onto \mathbf{v} .

(b) Let θ be the angle between **u** and **v**. Is $0 \le \theta < \frac{\pi}{2}$ or $\frac{\pi}{2} \le \theta < \pi$? Why?

(2) [12 nts	l Let $\mathcal D$ be th	ne plane that	contains the	points P -	$-(1 \ 0 \ 2)$	O-(A)	1-2) and	R -	$(2 \ 0 \ 0)$

(2) [12 pts] Let \mathcal{P} be the plane that contains the points P = (1, 0, 2), Q = (4, 1, -2), and (a) Find two different vectors that are perpendicular to the plane \mathcal{P} and have length 6.

(b) Find the area of the triangle whose vertices are $P,\,Q,$ and R.

(2)	119	+-
(3)	10	pts

(3) [13 pts] (a) Sketch the surface given in cylindrical coordinates by $r=\sqrt{2z}$.

(b) Convert the point $(-\sqrt{3}, \sqrt{3}, \sqrt{2})$ from rectangular coordinates to spherical coordinates.

(c) Find an equation in rectangular coordinates for the surface given in spherical coordinates by $\rho \sin \phi = 1$. Describe the surface.

- (4) [12 pts]
- (a) Let C be the curve parameterized by

$$\mathbf{r}(t) = \ln(t+1)\mathbf{i} + e^t\mathbf{j} + 2\cos t\mathbf{k}.$$

Find parametric equations for the tangent line to C at the point P = (0, 1, 2).

(b) Find the length of the curve $\mathbf{r}(t) = 2\cos t\,\mathbf{i} + 2\sin t\,\mathbf{j} + t\mathbf{k}$ between the points P = (2,0,0) and $Q = (-2,0,\pi)$.

(5)	[13	pts
(\circ)	110	Pus

(a) Find an equation for the plane that goes through the point (1, -3, 2) and is parallel to the plane whose equation is x + 4y + 5z = 0.

(b) Let \mathcal{L} be the line of intersection of the planes x+y+z=3 and x-y+4z=5. Find a parameterization of the plane that contains the point P=(1,2,0) and the line \mathcal{L} .

(6) [13 pts] Make a labelled sketch of the traces (slices) of the surface

$$y^2 - \frac{x^2}{3} - \frac{z^2}{12} = 1$$

in the planes $x=0,\,z=0,$ and y=k for $k=0,\,\pm 1,\,\pm 2.$ Then make a labelled sketch of the surface.