Math 2415

Paper Homework #3

- 1. **[12.5B: Planes]** Let A = (2, 0, 1), B = (3, 1, 0) and C = (4, 3, 2).
 - (a) Find the level set equation of the plane, \mathcal{P} , containing the points A, B, and C.
 - (b) Check that A, B, and C each satisfy the equation you derived in (a).
 - (c) Find a parametrization, $(x, y, z) = \mathbf{r}(s, t)$, of the plane, \mathcal{P} , containing A, B, and C.
 - (d) For each of the three points, A, B, and C, find values of the parameters (s, t) in the parameterization you found in (c).
 - (e) Let \mathcal{L} be the line passing through the point (-1, 0, 2) that is parallel to the vector (1, 2, 3). Find the point of intersection of this line with the plane, \mathcal{P} .
- 2. **[12.5B: Planes]** Find a non-zero vector that is parallel to both of the planes x + y + 2z = 5 and y 6z = 7.
- 3. [15.7A: Cylindrical Coordinates] Consider the following points, curves, surfaces, and solids
 - (i) The surface r = 2.
 - (ii) The curve where r = 2 and z = 3.
 - (iii) The curve where r=2 and $\theta=\pi/4$.
 - (iv) The point $(r, \theta, z) = (2, \pi/4, 3)$.
 - (v) The solid where $r \le 2$, $0 \le \theta \le \pi/4$ and $0 \le z \le 3$.

Now do the following problems:

- (a) Sketch (i)-(iv) altogether in one plot, with labels.
- (b) Sketch (v).
- (c) Convert the equation r=2 to an equation involving spherical coordinates, (ρ, θ, ϕ) .
- (d) Parametrize the line where r = 2 and $\theta = \pi/4$.
- (e) Find the rectangular and spherical coordinates of the point in (iv).

4. [15.8A: Spherical Coordinates]

- (a) Sketch the surface whose equation is given by $\phi = 5\pi/6$
- (b) Convert the equation $\phi = 5\pi/6$ to an equation involving cylindrical coordinates (r, θ, z) .
- (c) Convert the equation $x^2 + y^2 3z^2 = 1$ to an equation involving spherical coordinates, (ρ, θ, ϕ) . (The answer is not pretty, but that's OK.)
- (d) Sketch the solid described by the inequalities $1 \le \rho \le 4$, $\pi/4 \le \phi \le \pi/2$.