Math 2415

Paper Homework #12

1. 15.7, Triple Integrals in Cylindrical Coordinates

- (a) Sketch the solid region, E, in the first octant that is bounded by the cylinder $y^2 + z^2 = 16$ and the plane x + y = 4. Use a triple integral in cylindrical coordinates to find $\iiint_E (y^2 + z^2) dV$.
- (b) Find $\iiint_E \sqrt{x^2 + y^2} \, dV$ where E is the solid region above the xy-plane, below the paraboloid $z = 8 x^2 y^2$ and *outside* the cylinder $x^2 + y^2 = 4$. Sketch the solid E.
- (c) Let E be the solid region that lies above the xy-plane and that is bounded by the surfaces $z^2 x^2 y^2 = 1$ and $x^2 + y^2 + z^2 = 4$. Calculate the integral $\iiint_E z \ dV$.

2. 15.8, Triple Integrals in Spherical Coordinates

- (a) Find $\iiint z^2 dV$ where E is the solid region that is inside the sphere $x^2 + y^2 + z^2 = 9$ and below the cone $z = \sqrt{x^2 + y^2}$.
- (b) Find the volume of the region inside the ball $x^2 + y^2 + z^2 \le 9$ that lies between the planes y = 0 and $y = \sqrt{3}x$ in the first octant.
- (c) Let R be a non-zero constant. Find $\iiint_E (x^2 + y^2 + z^2)xyz \, dV$ where E is
 - i. The ball $x^2 + y^2 + z^2 \le R^2$
 - ii. The half-ball $x^2 + y^2 + z^2 \le R^2$, with $z \ge 0$
 - iii. The one-eighth ball $x^2 + y^2 + z^2 \le R^2$ with $x \ge 0$, $y \ge 0$, and $z \ge 0$.

Your answer should be given in terms of R. **Hint:** You can use symmetry to simplify the calculation for at least one of these regions.

3. 15.9, Change of Variables Theorem:

- (a) Evaluate $\iint_R (x-y)^2 e^{x+y} dx dy$ where R is the parallelogram bounded by x-y=1, x-y=3, x+y=-2 and x+y=1.
- (b) Use the change of variables $u = y/x^2$, $v = x/y^2$ to find the area of the region in the first quadrant that is bounded by the curves $y = x^2$, $y = 4x^2$, $x = y^2$ and $x = 3y^2$.

1