Math 2415

Paper Homework #11

1. 15.3, Double Integrals in Polar Coordinates:

- (a) Calculate $\iint_D xy \, dA$ where D is that portion of the annulus $9 \le x^2 + y^2 \le 16$ where y > x and x > 0.
- (b) Find the volume of the solid that is in the first octant and which is bounded by the cylinder $x^2 + y^2 = 9$ and the plane z = 1 + x + y.
- (c) Convert the iterated integral $\int_0^3 \int_0^{\sqrt{9-y^2}} \sin(x^2+y^2) dx dy$ to polar coordinates and then evaluate.

2. 15.6, Triple Integrals in Rectangular Coordinates:

- (a) Sketch the region in the first octant that is bounded by the planes x + z = 2 and 2y + z = 2. How many surfaces form the boundary of E? Each pair of these surfaces intersects in a curve. Be sure to include these curves in your sketch. Find $\iiint_E z \, dV$.
- (b) Find the volume of the region in the first octant bounded by the coordinate planes, the plane x + z = 2, and the parabolic cylinder $y = 9 x^2$.
- (c) Let *E* be the solid in the first octant bounded by the surfaces z = 2y and $x = 1 y^2$. (Recall that the first octant is where $x \ge 0$, $y \ge 0$, and $z \ge 0$.) Evaluate $\iiint_E x^2 dV$.