LAST NAME:							FIRST NAME:					
1	/15	2	/15	3	/15	4	/15	5	/15	Т	/75	

MATH 4362, Spring 2024 Midterm Exam One (Zweck)

Instructions: This 75 minute exam is worth 75 points. No books or notes! Show all work and give **complete explanations**. Don't spend too much time on any one problem.

(1) [15 pts] Find all solutions u = f(r) of the three-dimensional Laplace equation, $u_{xx} + u_{yy} + u_{zz} = 0$, that depend only on the radial coordinate $r = \sqrt{x^2 + y^2 + z^2}$. You may use (without proof) the fact that in spherical coordinates (r, θ, ϕ) , the Laplacian operator is given by

$$\Delta u = u_{rr} + \frac{2}{r}u_r + \frac{1}{r^2} \left\{ \frac{1}{\sin^2 \phi} f_{\theta\theta} + f_{\phi\phi} + \cot \phi f_\phi \right\}.$$

(2) [15 pts] Solve the initial value problem for u=u(t,x) given by

$$u_t - 4u_x + 2u - 1 = 0,$$

$$u(0, x) = \frac{1}{1 + x^2}.$$

(3) [15 pts] Solve the initial value problem for u = u(t, x) given by

$$u_t + 2(t-1)u_x = 0,$$

 $u(0,x) = e^{-x^2}.$

In addition, sketch the characteristic curves which go through the points $(0, x_0)$ for $x_0 = -1, 0, 1$. Finally, sketch the solution u = u(t, x) at t = 1 and t = 4.

(4) [15 pts] Consider the initial value problem

$$u_t + 2uu_x = 0, (1)$$

$$u(0,x) = \begin{cases} 1 & \text{if } x < 1, \\ 0 & \text{if } x \ge 1. \end{cases}$$
 (2)

(a) Sketch the characteristic curves in the (t, x)-plane through the points $(0, x_0)$ for $x_0 = -3, -2, -1, 0, 1, 2, 3$. Identify the region of the (t, x)-plane where the solution u = u(t, x) is a multi-valued function.

(b) Sketch the solution u = u(t, x) when t = 1.

(5) [15 pts] Consider the initial value problem

$$u_t + c(x)u_x = 0, (3)$$

$$u(0,x) = f(x), \tag{4}$$

where the function c = c(x) is continuous and satisfies the condition that there exist constants C_1 and C_2 so that

$$0 < C_1 < c(x) < C_2$$
 for all $x \in \mathbb{R}$.

Let
$$\beta(x) = \int_0^x \frac{1}{c(y)} dy$$
.

(a) Show that the domain of the function β is the entire real line.

(b) Show that the range of the function β is the entire real line. **Hint:** Let $z \in \mathbb{R}$. Show that there are x_1, x_2 so that $\beta(x_1) < z < \beta(x_2)$.

(c) Explain why the function $\beta: \mathbb{R} \to \mathbb{R}$ is invertible.

(d) Show that the characteristic curve through (t_*, x_*) intersects the x-axis at the point $(0, x_0)$ where $\beta(x_0) = \beta(x_*) - t_*$.

For the rest of this problem we consider the special case that $c(x) = 1 - \frac{3}{4+x^2}$.

(e) Show that the characteristic curve, x = x(t), through $(0, x_0)$ satisfies the equation

$$x + 3\arctan(x) = t + x_0 + 3\arctan(x_0).$$

[More space for answer to (e)]

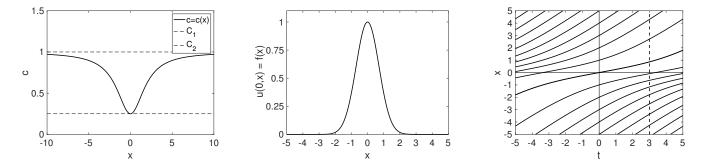


Figure 1: Left: The graph of c. Middle: Graph of Gaussian initial condition. Right: Characteristic curves with integer values of x_0 .

(f) Sketch the solution u = u(t, x) at time t = 3 in the special case that $u(0, x) = f(x) = e^{-x^2}$.