LAST NAME:	FIRST NAME:

1	/12	2	/12	3	/10	4	/10	5	/10
6	/12	7	/8	8	/12	9	/14	Т	/100

MATH 4362 (Spring 2018), Final Exam, (Zweck)

Instructions: This 2 hour 45 minute exam is worth 100 points. No books or notes! Show all work and give **complete explanations**. Don't spend too much time on any one problem.

Throughout this exam we define

$$\chi_{[a,b]}(x) = \begin{cases} 1 & \text{if } a \le x \le b, \\ 0 & \text{otherwise.} \end{cases}$$

- (1) [12 pts] True or false? Give brief explanations for your answers.
- (a) Suppose that u = u(t, x) solves

$$u_t + u_x = 0$$
 for $t > 0$ and $x \in \mathbb{R}$,
 $u(0, x) = \chi_{[-1,1]}(x)$ for $x \in \mathbb{R}$.

Then the function v(x) = u(1, x) is differentiable.

(b) Suppose that u = u(t, x) solves

$$u_t = u_{xx}$$
 for $t > 0$ and $x \in \mathbb{R}$,
 $u(0, x) = \chi_{[-1,1]}(x)$ for $x \in \mathbb{R}$.

Then the function v(x) = u(1, x) is differentiable.

(c) Suppose that u = u(t, x) solves

$$u_{tt} = u_{xx}$$
 for $t > 0$ and $x \in \mathbb{R}$,
 $u(0, x) = \chi_{[-1,1]}(x)$ for $x \in \mathbb{R}$,
 $u_t(0, x) = 0$ for $x \in \mathbb{R}$.

Let w(t) = u(t, 2). Then there is a time T > 0 so that w(t) = 0 for all 0 < t < T.

(2) [12 pts] Let $f:[0,\pi]\to\mathbb{R}$ be defined by $f(x)=\frac{\pi}{2}-x$ for $x\in(0,\pi)$ and $f(\pi)=0$. Let \widetilde{f} be the 2π -periodic odd extension of f. Graph \widetilde{f} . Explain why the Fourier series of \widetilde{f} converges pointwise but not uniformly on \mathbb{R} . What is the value of the Fourier series of \widetilde{f} at (i) x=0 and (ii) $x=\frac{5\pi}{4}$?

(3) [10 pts] Solve for u=u(t,x) on $t\geq 0$ and $x\in\mathbb{R}$:

$$u_{tt} = 4u_{xx} + \sin t,$$

$$u(0, x) = e^{-x^2},$$

$$u_t(0, x) = 0.$$

(4) [10 pts] Prove that for each t > 0 the series,

$$u(t,x) = \sum_{k=0}^{\infty} e^{-k^2 t} \cos(kx),$$

converges uniformly for $x \in \mathbb{R}$. Hence show that u is continuous where t > 0.

Hint: Fix $\epsilon > 0$. Prove that for all $t > \epsilon$ the series converges uniformly for $x \in \mathbb{R}$.

(5) [10 pts] Suppose that u = u(t, x) solves

$$u_t = u_{xx},$$
 for $t > 0$ and $x \in \mathbb{R}$, $u(0, x) = \arctan(x)$.

Let $v(t,x) = u_t(t,x)$. Show that v solves

$$v_t = v_{xx},$$
 for $t > 0$ and $x \in \mathbb{R}$,
 $v(0, x) = \frac{-2x}{(1+x^2)^2}.$

(6) [12 pts] Suppose that u = u(t, x) solves $u_t + (1 + x^2)u_x = 0$. Find and sketch the characteristic curves. Shade that portion of the (t, x)-plane with t > 0 where the solution is determined by the values of u at t = 0. Derive a formula for the solution, u = u(t, x), with initial values u(0, x) = f(x).

(7) [8 pts] Let $h(x,y) = \chi_{[-\pi/4,\pi/4]}(\theta)$ where $(x,y) = (\cos\theta,\sin\theta)$. Let u = u(x,y) solve Laplace's equation

$$\triangle u = 0$$
 in $x^2 + y^2 < 1$,
 $u = h$ on $x^2 + y^2 = 1$.

True or false? Give brief explanations for your answers. In the following, $u=u(r,\theta)$.

(a)
$$u(0,0) < u(1,0)$$

(b)
$$u(0,0) < u(1,\pi)$$

(c)
$$u(0.9, \pi) < u(0.9, 0)$$
.

Hint: The solution is given in polar coordinates by

$$u(r,\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} h(\phi) K(r,\theta-\phi) d\phi, \quad \text{where } K(r,\theta) = \frac{1-r^2}{1+r^2-2r\cos\theta}.$$

(8) [12 pt	s] Let $C_0^{\infty}(\mathbb{R})$) be the space	of infinitely	${\it differentiable}$	functions,	$u: \mathbb{R}$ -	$\rightarrow \mathbb{R}, $	with t	ne pi	roperty
that there	e exists an R	> 0 so that $u(x)$	(x) = 0 for all	x > R.						

(a) Define what it means for $L:C_0^\infty(\mathbb{R})\to\mathbb{R}$ to be a distribution.

(b) Let $g: \mathbb{R} \to \mathbb{R}$ be a piecewise continuous function and $u \in C_0^{\infty}(\mathbb{R})$. Show that $L_g(u) = \int_{-\infty}^{\infty} g(x)u(x) dx$ is a distribution.

(c) Let $\xi \in \mathbb{R}$. Define the Dirac delta distribution, δ_{ξ} , at $x = \xi$, and show that δ_{ξ} is indeed a distribution.

(d) Let σ_{ξ} be the piecewise continuous function defined by

$$\sigma_{\xi}(x) = \begin{cases} 0 & \text{if } x \leq \xi \\ 1 & \text{if } x > \xi. \end{cases}$$

Show that the derivative of the distribution $L_{\sigma_{\xi}}$ equals the Dirac distribution, δ_{ξ} .

(9) [14 pts] Find a Fourier series solution, u=u(t,x), for t>0 and $x\in[0,\pi]$, of

$$u_t = u_{xx},$$

 $u_x(t,0) = 0,$
 $u_x(t,\pi) = 0,$
 $u(0,x) = \chi_{[0,\pi/2]}(x).$

You may assume the eigenvalues satisfy $\lambda \geq 0$.