LAST NAME:						FIRST	FIRST NAME:						
1	/15	2	/15	3	/15	4	/10	5	/10	6	/10	Т	/75

MATH 4362 (Spring 2018) Midterm Exam One (Zweck)

Instructions: This 75 hour exam is worth 75 points. No books or notes! Show all work and give **complete explanations**. Don't spend too much time on any one problem.

(1) [15 pts] Complete the table.

PDE	Order	Equilibrium or	Linear	Homogeneous or	Name
		Dynamic	Nonlinear	Inhomogeneous	
$u_t - 4u_{xx} = 0$					
$u_{tt} - 16u_{xx} = \sin x \cos t$					
$u_t + uu_x = 0$					
$u_{xx} + u_{yy} = f(x, y)$					
$u_t + e^{-x}u_x + u = 0$					

(2) [15 pts] Solve the initial value problem for u=u(t,x) given by

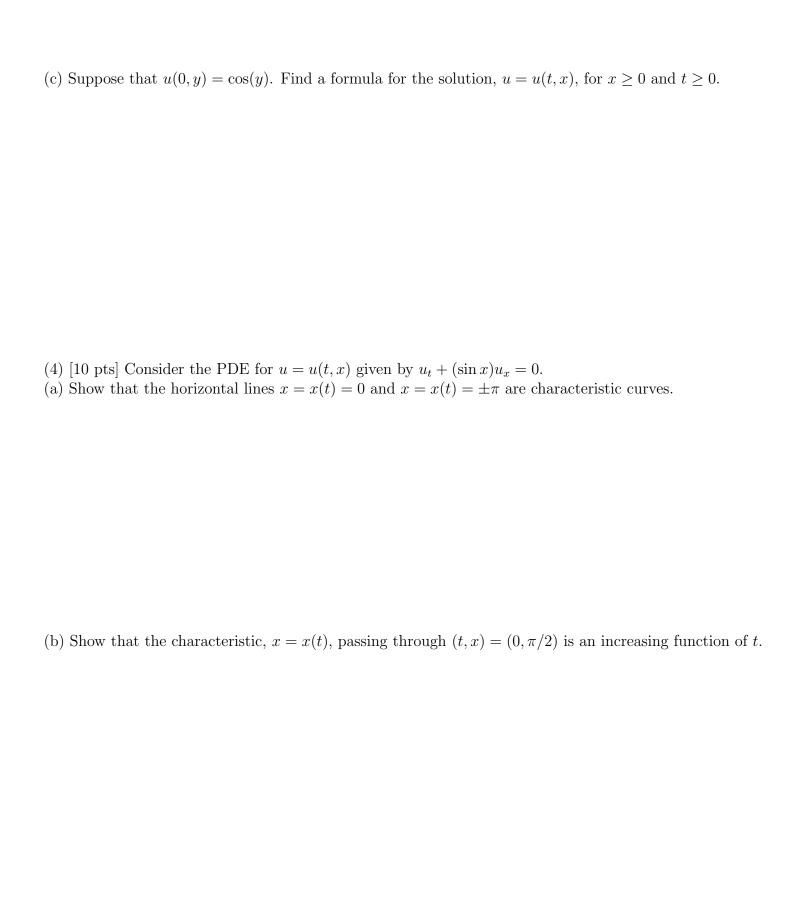
$$u_t - 4u_x + 3u = 0,$$

 $u(0, x) = e^{-x^2}.$

- (3) [15 pts] Consider the PDE for u = u(t, x) given by $u_t + x^2 u_x = 0$.
- (a) By solving the ODE for the characteristics show that the characteristic curve that goes through the point (t_1, x_1) is given by

$$x = x(t) = \frac{x_1}{1 + x_1(t_1 - t)}. (1)$$

(b) Show that if $x_1 > 0$ then the characteristic curve in (1) intersects the x-axis. Sketch this curve when $(t_1, x_1) = (2, 1)$.

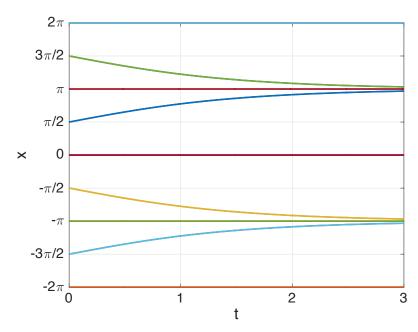


(c) Suppose now that u = u(t, x) solves the initial value problem

$$u_t + (\sin x)u_x = 0,$$

 $u(0, x) = \begin{cases} 1 & \text{if } |x| \le \frac{\pi}{2}, \\ 0 & \text{if } |x| > \frac{\pi}{2}. \end{cases}$

Use the sketch of the characteristic curves below to sketch the solution u at times t=1 and t=2. What is $u_{\infty}(x)=\lim_{t\to\infty}u(t,x)$?



(5) [10 pts] Solve the initial value problem

$$u_t + 3uu_x = 0, (2)$$

$$u(0,x) = \begin{cases} -2 & \text{if } x < 1, \\ 0 & \text{if } x \ge 1. \end{cases}$$
 (3)

In particular, identify the subset of the half plane $\{(t,x)|t\geq 0\}$ on which u is determined by (3).

(6) [10 pts] Suppose that u=u(t,x) is a solution of the PDE

$$u_{tt} - c^2 u_{xx} = 0. (4)$$

Let $\xi = x - ct$ and $\eta = x + ct$, and define a function $v = v(\xi, \eta)$ by

$$v(\xi,\eta) = u\left(\frac{\eta - \xi}{2c}, \frac{\eta + \xi}{2}\right)$$
. So, we know that $u(t,x) = v(x - ct, x + ct)$.

Prove that u solves (4) if and only if $v_{\xi\eta} = 0$. Hence show that any solution of (4) is of the form,

$$u(t,x) = p(x-ct) + q(x+ct),$$
 for some functions p and q .