Math 4362 Homework #4

1. Use the method described on pages 8 and 9 of Lecture 3 of the handwritten lecture notes to solve the PDE-IVP

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x}(xu) = 0,\tag{1}$$

$$u(0,x) = f(x). (2)$$

In particular, use the method to show that the characteristic curve through the point (t_0, x_0) is given by $x(t) = x_0 e^{t-t_0}$. Sketch some of the characteristic curves in the (t, x)-plane. Then show that the solution to the PDE-IVP is given by $u(t, x) = f(xe^{-t})e^{-t}$. In the case that $f(x) = \frac{1}{1+x^2}$ sketch the solution at times t = 0, t = 1, and t = 2.

- 2. 2.3.1 (a) and (b)
- 3. 2.3.2 (a)
- 4. Consider the PDE-IVP

$$u_t + uu_x = 0, (3)$$

$$u(0,x) = \frac{1}{1+x^2}. (4)$$

Write down a formula for the characteristic line that goes through the point y on the x-axis. Sketch some of the characteristic lines in the (t,x)-plane. Calculate the critical time, t_* , at which the solution, u, develops a vertical tangent line. Use the method of characteristics to sketch the solution as a function of x just before and just after the critical time. (Just after the critical time interpret the solution as a multi-valued function.)

- 5. 2.3.5
- 6. 2.3.7

Additional Recomended Problems [Do not turn in]

- 1. 2.3.4
- 2. 2.3.15. Hint: Show that $u_t + u^2 u_x = -ku \frac{\gamma}{\gamma t + \delta} + ku^{2 + \frac{k-1}{k}} \frac{\alpha}{\gamma t + \delta}$.
- 3. 2.3.16. Specifically, (i) What is the analogue of Equation (2.35) in Olver? (ii) How do Figs. 2.14 and 2.15 in Olver change? (iii) What is the analogue of Equation (2.41) in Olver?