Math 6301 Homework 7 John Zweck

- 1. A.2E: 5
- 2. Suppose that $||f_n f||_{\infty} \to 0$ as $n \to \infty$. Show that $f_n \to f$ pointwise almost everywhere. **Hint:** Mimic the proof that L^{∞} is complete (Theorem 15).
- 3. Give an example to show that pointwise almost everywhere convergence does not imply L^{∞} -convergence.
- 4. Let $X \subset \mathbb{R}^n$ be measurable and let f_n , $f: X \to \mathbb{R}$ be measurable. Show that if f_n is Cauchy in measure and there is a subsequence so that $f_{n_k} \stackrel{m}{\to} f$, then $f_n \stackrel{m}{\to} f$.
- 5. Let $X \subset \mathbb{R}^n$ be measurable and let f_n , f, g_n , $g: X \to \mathbb{R}$ be measurable. Prove that
 - (a) If $f_n \stackrel{m}{\to} f$ and $f_n \stackrel{m}{\to} g$ then f = g almost everywhere.
 - (b) If $f_n \stackrel{m}{\to} f$ and $g_n \stackrel{m}{\to} g$ then $f_n + g_n \stackrel{m}{\to} f + g$.
 - (c) **Extra Credit:** If $\lambda(X) < \infty$ and $f_n \stackrel{m}{\to} f$ and $g_n \stackrel{m}{\to} g$ then $f_n g_n \stackrel{m}{\to} f g$. **Hints:**
 - (i) $f_n g_n f g = (f_n f)(g_n g) + f(g_n g) + g(f_n f)$.
 - (ii) Suppose $|h_1(x)h_2(x)| > \epsilon$. Then there is a rational r so that $|h_1(x)| > r > \frac{\epsilon}{|h_2(x)|}$.

Additional Problem [Not not hand in]

- 1. A.2E: 1
- 2. A.2E: 3
- 3. Give an example to show why we need $\lambda(X) < \infty$ in 5(c) above.