Math 6301 Homework 2 John Zweck

Notation: A.1B means Axler Chapter 1. Section B.

- 1. A.1A: 1
- 2. A.1A: 2
- 3. A.1A:4
- 4. A.1A: 11
- 5. A.1B: 3

Additional Problem [Not not hand in]

- 1. A.1A:3
- 2. A.1B: 5
- 3. **J**.2.8
- 4. Suppose that the three desirable properties of area (Lecture 5, page 5) hold.
 - (a) Let A be a bounded set in \mathbb{R}^2 and $B \subseteq A$. Show that $\mu(A) \ge \mu(B)$. [Hint: $A = B \cup (A \setminus B)$.]
 - (b) Let A be a non-empty bounded open set in \mathbb{R}^2 . Show that $\mu(A) > 0$.
- 5. Suppose that $f:[a,b]\to\mathbb{R}$ is Riemann integrable and $\lambda\in\mathbb{R}$. Prove that λf is Riemann integrable and that

$$\int_a^b \lambda f(x) \, dx = \lambda \int_a^b f(x) \, dx.$$

- 6. Let $f:[a,b]\to\mathbb{R}$ be bounded. Show that f is Riemann integrable if and only if $\forall \epsilon>0$ there exists a partition, P, of [a,b] with $S(f,P)-s(f,P)<\epsilon$.
- 7. Let a < c < b. If f is Riemannian integrable on [a, c] and on [c, b], then f is Riemannian integrable on [a, b]. Hint: Use result in previous problem.
- 8. Construct a sequence of functions $f_n:[0,1]\to\mathbb{R}$ with the following properties:
 - (a) $f_n(x) \to f(x)$ pointwise for all $x \in [0, 1]$,
 - (b) Each f_n is Riemann integrable, and
 - (c) f is not Riemann integrable.
- 9. Let $f:[0,1] \to \mathbb{R}$ be Riemann integrable. Suppose that for all $a,b \in [0,1]$ with a < b there exists a real number $c \in (a,b)$ so that f(c) = 0. Show that $\int_0^1 f(x) \, dx = 0$. Must $f \equiv 0$ be identically zero? What if f is continuous?
- 10. Let $f:[a,b]\to\mathbb{R}$ be continuous and suppose that $\int_a^c f(x)\,dx=0$ for all $c\in[a,b]$. Prove that f(x)=0 for all $x\in[a,b]$.

1

- 11. If $f:[a,b]\to\mathbb{R}$ is bounded and f^2 is Riemann integrable must f also be Riemann integrable?
- 12. Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable and let $c\in[a,b]$. Let C be a real number with $C\neq f(c)$. Define g by

$$g(x) = \begin{cases} f(x) & \text{if } x \neq c \\ C & \text{if } x = c. \end{cases}$$

Prove that g is Riemann integrable on [a, b].

13. Suppose that $f:[a,b]\to\mathbb{R}$ is continuous and that $\int_a^b f(x)g(x)\,dx=0$ for every continuous function $g:[a,b]\to\mathbb{R}$. Show that $f\equiv 0$ on [a,b].