Math 6301 Some Extra Problems John Zweck

- 2. **J**.2B: 28
- 3. **J**.2B: 32
- 4. **J**.2B: 33
- 5. **J**.2B: 35
- 6. **J**.2B: 37
- 7. **J**.2B: 38
- 8. **J**.5: 1
- 9. **J**.5: 5
- 10. **J**.5: 13
- 11. **J**.5: 14
- 12. **J**.5: 16abc
- 13. **A**.2A: 12
- 14. A.2B: 1
- 15. A.2B: 3
- 16. A.2B: 7
- 17. A.2B: 8
- 18. **A**.2B: 12
- 19. **A**.2B: 14
- 20. A.2B: 18
- 21. A.2B: 28,
- 22. A.2D: 5
- 23. A.2D: 7
- 24. A.2E: 1
- 25. A.2E: 9
- 26. Prove [*a*, *b*) is Borel
- 27. Prove every countable set is Borel

- 28. Let f be a simple function taking its distinct values on disjoint sets E_1, \dots, E_n . Show that f is measurable if and only if E_1, \dots, E_n are measurable.
- 29. Let A and B be bounded subsets of \mathbb{R} such that

$$\inf\{|x - y| : x \in A, y \in B\} > 0.$$

Show that $\lambda^*(A \cup B) = \lambda^*(A) + \lambda^*(B)$.

- 30. Let *G* be an open set so that $A \subseteq G$ and $G \cap B = \emptyset$. Show that $\lambda^*(A \cup B) = \lambda^*(A) + \lambda^*(B)$.
- 31. Use definition of a measurable function to show that any constant function is measurable.
- 32. Let *S* be a dense subset of \mathbb{R} . Show that *f* is measurable iff $\{x : f(x) > c\}$ is measurable for all $c \in S$.
- 33. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable. Show that f' is measurable. Hint: Use limit definition of derivative and fact that the translate of a measurable set is measurable.
- 34. Let

$$f_n(x) = \begin{cases} 1 & \text{if } \frac{1}{n} \le |x| \le \frac{2}{n} \\ 0 & \text{otherwise.} \end{cases}$$

Show that $f_n \to 0$ on [-2,2] but that there is no set, S, of measure zero so that $f_n \to 0$ uniformly on $[-2,2] \sim S$. For all $\epsilon > 0$ explicitly construct a measurable set B for which conclusions of Egorov's theorem hold.

35. Suppose $f_n \to f$ pointwise on [0,1] and that each f_n is measurable. Use Egorov's Theorem to show that there is a sequence of sets A_n in [0,1] so that $\lambda([0,1] \sim \bigcup_{n=1}^{\infty} A_n) = 0$ and $f_n \to f$ uniformly on each A_n .