LAST NAME:				FIRST NAME:					
1 /12 2	/9 3	/8 4	/12	2 5	/12 6	/10 7	/12	Т	/75
	MATH 4355 [Spring 2020] Exam I, Feb 24th								
No books or notes! NO CALCULATORS! Show all work and give complete explanations . Don't spend too much time on any one problem. This 75 minute exam is worth 75 points.									
(1) [12 pts] State the (a) What it means for			finite dime	ensional					
(b) A linearly independent	ndent set								
(c) The nullspace of a	ı matrix								
(d) The rank of a mar	trix								

(2) [9 pts] Let

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 4 \\ 4 & 6 & 7 \end{pmatrix}.$$

(a) Find a nonsingular matrix P so that $PA = E_A$ where E_A is in reduced row echelon form, i.e, E_A is in row echelon form, all pivot entries are 1, and all entries above the pivots are 0.

(b) Find nonsingular matrices ${\bf P}$ and ${\bf Q}$ so that ${\bf P}{\bf A}{\bf Q}$ is in rank normal form.

(3) [8 pts] Let $F : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Prove that there is a matrix **A** so that $F(\mathbf{x}) = \mathbf{A}\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.

(' 1	۱	12	ntsl	Let	\mathcal{B}	he a	hasis	for	an	n-dimensional	vector	space	\mathcal{V}
(4)	14	pusi	ьеь	\mathcal{D}	ne a	Dasis	101	an	n-dimensional	vector	space,	ν .

(a) Define the coordinate vector, $[\mathbf{v}]_{\mathcal{B}}$, of a vector $\mathbf{v} \in \mathcal{V}$.

(b) Let $T: \mathcal{V} \to \mathbb{R}^n$ be defined by $T(\mathbf{v}) = [\mathbf{v}]_{\mathcal{B}}$. Prove that T is a linear transformation, and that T is one-to-one and onto. Justify any claims you make.

(5) [12 pts] Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{2}y \\ -4x + 5y \end{pmatrix},$$

and let \mathcal{B} be the basis of \mathbb{R}^2 given by $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\}$. Calculate the matrix, $[T]_{\mathcal{BB}}$, of T in this basis.

(6) [10 pts] Suppose of the non-zero rows	that E is a row ec. of E .	helon form of a ma	atrix ${f A}$. Prove tha	t the range of \mathbf{A}^T	is the span

(7) [12 pts] Let \mathcal{S} be a linearly independent set of vectors in a vector space \mathcal{V} and let $\mathbf{v} \in \mathcal{V}$. Prove that $\mathcal{S} \cup \{\mathbf{v}\}$ is linearly independent $\iff \mathbf{v} \notin \operatorname{Span} \mathcal{S}$.