NAME:

1 /15 2 /6 3 /16 4 /10 5 /10 6 /8 7 /10 T /75

MATH 430 (Fall 2008) Exam 1, Sep 29

No calculators, books or notes! Show all work and give **complete explanations**. This 75 minute exam is worth a total of 75 points.

- (1) [15 pts]
- (a) Define the nullspace and range of a matrix.

(b) State the Rank and Nullity Theorem, and illustrate what it says in the context of a well-chosen example.

(0)	Define the concept	$\circ f \circ$	marrimal	lincon	ler ind	lanandant	aubant	$\circ f \circ$	finita	dimensional	most on anges
1 (:	- Denne тае сопсерь	()) 7	. шахшпаг	ппеаг	11/1/11/11	терепаень	SHIDSEL	()I A	. пппе	аниенѕюнал	vector space

(2) [6 pts] Let **A** be a block matrix of the form
$$\mathbf{A} = \begin{pmatrix} \mathbf{B} \\ \mathbf{C} \end{pmatrix}$$
. Prove that $N(\mathbf{A}) = N(\mathbf{B}) \cap N(\mathbf{C})$.

(3) [16 pts] Let \mathbf{A} be the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 9 & 7 \\ 3 & 7 & 4 \\ 8 & 18 & 14 \end{pmatrix}.$$

Find bases for the four fundamental subspaces of ${\bf A}.$

4) [10 pts] a) Prove that if a matrix is both symmetric and skew-symmetric then it is zero.	
b) Without using matrices prove that the composition of two linear mappings between vector spanies.	aces is

- (5) [10 pts]
- (a) Let **A** be $m \times n$ and **B** be $n \times \ell$. Prove that each column of **AB** can be expressed as a linear combination of the columns of **A**. In particular, find the coefficients in these linear combinations.

(b) Let

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 \end{pmatrix}$$

Use the formula you derived in (a) to calculate the 3rd column of AB.

(6) [8 pts] For each of the following statements either prove that the statement is true or give a <i>specific</i> counterexample.
(a) The union of two vector subspaces of a vector space is a vector subspace.
(b) The intersection of two vector subspaces of a vector space is a vector subspace.

(7) [10 pts] Find a basis for the vector space consisting of all 3×3 skew-symmetric matrices and prove
that it is indeed a basis.
Pledge: I have neither given nor received aid on this exam
Signature: