

Show all work and give complete explanations for all your answers. This is a 120 minute exam. It is worth a total of 120 points.

- (1) [32 pts]
- (a) Define what it means for a square matrix to be normal. State the Spectral Theorem for normal matrices.

(b) State three equivalent conditions that guarantee that a real-symmetric matrix is positive definite.

(c) Define what it means for a matrix to be unitary. What can you say about the determinant of a unitary matrix, and why?

(d) Suppose that ${\bf A}$ is a real 4×4 matrix such that

$$\begin{pmatrix} 1 \\ 0 \\ 2 \\ 3 \end{pmatrix} \in \mathcal{R}(\mathbf{A}) \quad \text{and} \quad \begin{pmatrix} 3 \\ -1 \\ 0 \\ 2 \end{pmatrix} \in \mathcal{N}(\mathbf{A}).$$

Can **A** be symmetric? Why?

(2) [10 pts] Find the straight line $y = \alpha + \beta t$ that best fits the following data in the least squares sense:

$\overline{t_i}$	0	1	3	6
y_i	2	3	7	12

(3) [12 pts] A student has the next night. Furthermore, the study in the long run?	habit that if she doesn't probability that she stud	study one night, she is lies two nights in a row	70% certain of studying the is 50%. How often does she

(4) [12 pts] Let

$$\mathcal{X} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} \right\}, \qquad \mathcal{Y} = \operatorname{Span} \left\{ \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix} \right\}.$$

Show that \mathcal{Y} is the orthogonal complement of \mathcal{X} in \mathcal{R}^4 and calculate the matrix of the projector onto \mathcal{X} along \mathcal{Y} .

(5) [20 pts] Let **A** be a 3×3 real-symmetric matrix with spectrum $\sigma(A) = \{-2, -4\}$ and

$$\mathcal{N}(\mathbf{A} + 2\mathbf{I}) = \operatorname{Span} \left\{ \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} \right\}, \qquad \mathcal{N}(\mathbf{A} + 4\mathbf{I}) = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -8 \\ 6 \end{pmatrix} \right\}.$$

(a) Find a diagonal matrix D and an orthogonal matrix P so that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^T$.

(b) Calculate the matrices of the spectral projectors G_1 and G_2 corresponding to the eignevalues $\lambda_1 = -2$ and $\lambda_2 = -4$ of A.

(c) Calculate the matrix $e^{\mathbf{A}t}$, where $t \in \mathcal{R}$.

(d) Use your answer to (c) to solve the initial value problem

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}, \quad \text{where } \mathbf{x}(0) = \begin{pmatrix} 1\\0\\1 \end{pmatrix}.$$

(a) Let \mathcal{M} be a vector subspace of a finite dimensional vector space \mathcal{V} . Define the orthogonal complement \mathcal{M}^{\perp} of \mathcal{M} . Prove that \mathcal{M}^{\perp} is a vector subspace of \mathcal{V} .

(b) Suppose that $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthonormal basis for a vector space \mathcal{V} . Derive a formula for the coordinate vector $[\mathbf{v}]_{\mathcal{B}}$ of a vector $\mathbf{v} \in \mathcal{V}$.

(7) [10 pts] Let $\mathbf{T}: \mathcal{U} \to \mathcal{V}$ be a linear transformation between finite-dimensional vector spaces. Let \mathcal{B} be a basis for \mathcal{U} and let \mathcal{B}' be a basis for \mathcal{V} . Define the coordinate matrix $[\mathbf{T}]_{\mathcal{BB}'}$ of \mathbf{T} with respect to the bases \mathcal{B} and \mathcal{B}' . Also, prove that for any vector $\mathbf{u} \in \mathcal{U}$,

$$[\mathbf{T}(\mathbf{u})]_{\mathcal{B}'} \ = \ [\mathbf{T}]_{\mathcal{B}\mathcal{B}'}[\mathbf{u}]_{\mathcal{B}}.$$

(8) [12 pts] Define the concepts algebraic multiplicity and geometric multiplicity. Prove that if a square matrix is diagonalizable then for each eigenvalue the algebraic and geometric multiplicities are equal.
Pledge: I have neither given nor received aid on this exam
Signature: