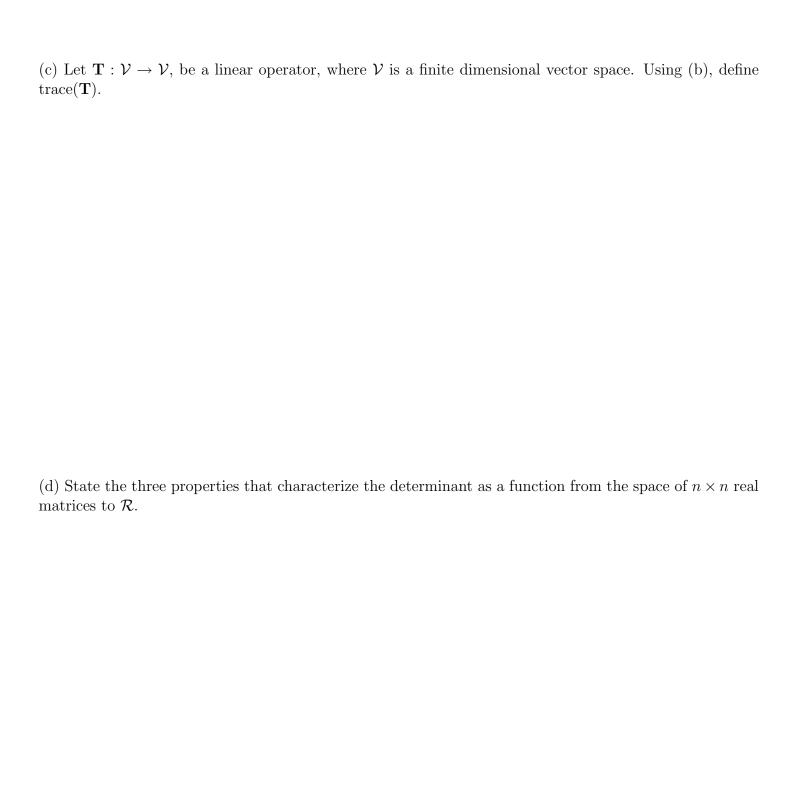
NAN	ЛЕ:										
1	/30 2	/10	3 /12	4 /18	5	/10	6 /8	7	/12	Т	/100
		М	ATH 430 (F	Fall 2005) E	xam	2. Nov	ember 3rd				

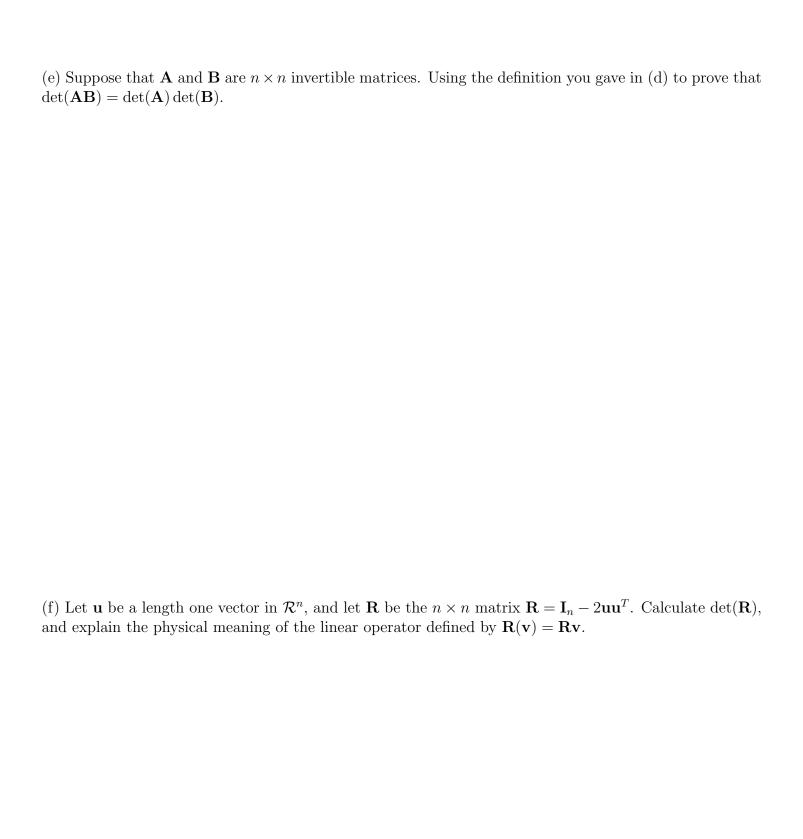
MATH 430 (Fall 2005) Exam 2, November 3rd

Show all work and give **complete explanations** for all your answers. This is a 75 minute exam. It is worth a total of 100 points.

- (1) [30 pts]
- (a) Let **u** be a non-zero $n \times 1$ column vector and **v** a non-zero $m \times 1$ column vector. Prove that $\mathbf{u}\mathbf{v}^T$ has rank 1.

(b) Suppose that **A** and **B** are $n \times n$ matrices. Prove that trace(**AB**) = trace(**BA**).





- (2) [10 pts] True or false? If true give a brief justification. If false provide a counterexample.
- (a) $\det(\mathbf{A} + \mathbf{B}) \det(\mathbf{A} \mathbf{B}) = \det(\mathbf{A}^2 \mathbf{B}^2)$.

(b) Let $\mathbf{v} = (2,3)^T$. In the standard basis \mathcal{B} for \mathcal{R}^2 , the matrix of the projection operator $\mathbf{P}_{\mathbf{v}} : \mathcal{R}^2 \to \mathcal{R}^2$ onto the span of \mathbf{v} is

 $[\mathbf{P}_{\mathbf{v}}]_{\mathcal{B}} = \begin{pmatrix} 4 & 6 \\ 6 & 9 \end{pmatrix}.$

(3) [12 pts] For the linear operator $\mathbf{T}: \mathcal{R}^2 \to \mathcal{R}^2$ defined by $\mathbf{T}(x,y) = (x-y,2x+4y)$, calculate the matrix, $[\mathbf{T}]_{\mathcal{B}}$, of \mathbf{T} in the basis $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$.

(4) [18 pts] Let \mathbf{P} be the matrix

$$\mathbf{P} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 6 \\ 7 & 8 & 9 \end{pmatrix}.$$

- (a) Calculate $\det(\mathbf{P})$ using
- (i) Row operations

(ii) Block determinants based on the blocking

$$\mathbf{P} = \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}, \quad \text{where } \mathbf{A} \text{ is } 1 \times 1 \text{ and } \mathbf{D} \text{ is } 2 \times 2.$$

(iii) A cofactor expansion.

(b) What is $\det(\mathbf{P}^T\mathbf{P})$, and why?

(5) [10 pts] Let $\mathbf{T}: \mathcal{V} \to \mathcal{W}$ be a linear transformation between finite-dimensional vector spaces \mathcal{V} and \mathcal{W} . Let \mathcal{B} be a basis for \mathcal{V} and let \mathcal{B}' be a basis for \mathcal{W} . Define the matrix $[\mathbf{T}]_{\mathcal{BB}'}$ of \mathbf{T} with respect to these two bases, and prove that

$$[\mathbf{T}(\mathbf{u})]_{\mathcal{B}'} \ = \ [\mathbf{T}]_{\mathcal{B}\mathcal{B}'}[\mathbf{u}]_{\mathcal{B}}.$$

(6) [8 pts] Suppose A is a square matrix whose entries are differentiable functions of a real variable t , that is, $\mathbf{A}_{ij} = \mathbf{A}_{ij}(t)$. Prove that det A is also a differentiable function of t .									

(7) [12 pts] The least squares quadratic fit to m data points $(t_1, y_1), (t_2, y_2), \dots (t_m, y_m)$ in \mathcal{R}^2 is the quadratic function $y = f(t) = \alpha + \beta t + \gamma t^2$ for which the parameter vector (α, β, γ) is the global minimum of the function

$$Q = Q(\alpha, \beta, \gamma) = \sum_{i=1}^{m} (\alpha + \beta t_i + \gamma t_i^2 - y_i)^2.$$

(a) Let $\mathbf{x} = (\alpha, \beta, \gamma)^T$. Find an $m \times 1$ vector \mathbf{y} and an $m \times 3$ matrix \mathbf{A} so that

$$Q = Q(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|^2.$$

(b) By differentiating $Q(\mathbf{x})$ with respect to the <i>i</i> -t satisfies the normal equations $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{y}$.	sh coordinate \mathbf{x}_i of \mathbf{x} , prove that the minimizer of Q
Pledge: I have neither given nor received aid on this	$s \ exam$
Signature:	