

We can get F.S. for of as = siz from that fas=se PROP Suppose for PW CTS with mean o on [-T, T] with $f \omega = \sum_{k=1}^{\infty} a_k \cos kx + b_k a_k x$ Then the F.S. of g(x) = $\int_{-\pi}^{\pi} f(t)dt$ no $g(x) = \int_{-\pi}^{\pi} f(t)dt$ no $g(x) = \int_{-\pi}^$ where $m = 2\pi \int g \alpha i dic$ "Can integrate term by term." Voing the Guiding Principle Let we introduce a FILTER FUNCTION $h(x) = \sum_{k=-\infty}^{\infty} d_k e$ where $d_k = \infty$ fairly fast as $|k| \to \infty$

Then a	en o
signal	fai = E che
- B	$f(x) = \sum_{k=-\infty}^{\infty} ikx$
we u	se the filter to smooth of by
defined	
'	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	fow = 2 chole
	from = E cholk e ikn
We us	Il have chal -> o faster than Ch -> o
Dis .	the should be smooth than h.
\(\ \	0 00 1
High	frequerey oscilletrons in fhave
	been danged out by h!
	ver surped our cy n.
R TH	LE DOUTAIN APPROACH
We	can also smooth a signal using
(list a	1) (weighted) averaging
Suppo	se we have described for
gold	xo, x, , x where x; = jax
	,

Then	we could smooth of using local averaging:
	Sf = Smoothed versus of f
	Sf (sy.) = $\frac{1}{3}$ Sf (xj-1) + f(xy) + f(xy+1)= re generally given weights (we) $k = -\kappa$
or me	re geneally given weights (Wb) h=-K
define	
(2)	$f(x) = w_k f(x_{j-k}) + w_{k-1} f(x_{j-k+1}) + \cdots$
	+ 4 f(x; 1) + 4 f(x) + 4 f(x)+1)
	+ + W_K+1 f (xj+K-1) + W f (xj+K)
	$= \sum_{k=-\kappa} U_k f(x_{j-k})$
Supos	e Wh = h(x) for some function h 211 - Devoler
	- Perfec
Then	N .
294-14	\mathcal{A}

Illustration of Filtering

We filter the 2π -periodic signal defined on $[0, 2\pi]$ by

$$f(t) = \begin{cases} 0, & 0 \le t < \pi, \\ 1, & \pi \le t < 2\pi. \end{cases}$$
 (1)

In some cases we add white noise to f by replacing each value f(t) by $f(t) + X_{0,\mu}(t)$ where the $X_{0,\mu}(t)$ are independent, normally distributed random variables with mean zero and standard deviation μ .

The filter function is chosen to be the Gaussian with standard deviation, σ , defined by

$$h(t) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\left(\frac{t-\pi}{\sigma}\right)^2\right]. \tag{2}$$

The filtered function is the convolution (h*f)(t), which we compute in the frequency domain using the Convolution Theorem.

All results were obtained by discretizing the time domain with N=512 points and using the DFT.

We first show results with filter width of $\sigma = 0.1$ (moderate filtering).

Figure 1: Amazing Fact: The Fourier transform of a Gaussian is a Gaussian!

Figure 2: The filter damps high frequencies in f (left) and rounds off sharp corners (smooths) f in the time domain (right).

Figure 3: Adding a small amount of noise to f we see that the filter suppresses the high frequency noise, but some low frequency noise remains and signal is smoothed too.

Next we show results with filter width of $\sigma = 0.3$ (strong filtering).

Figure 4: A wider filter in time (more averaging) corresponds to a narrower filter in frequency (more aggresive damping of high frequencies).

Figure 5: With stronger filtering, high frequencies are damped more but the signal is more distorted and looses it piecewise constant shape.

Figure 6: The stronger filter is more effective with large noise (left: $\sigma = 0.1$, right: $\sigma = 0.3$).