Math 4355
Matlab Homework #C

You may work either solo or in a group of two. If you work in a group of two,
each student must upload their own report into eLearning and you must list
both names at the top of the report and briefly state who did what.

Turn in a single pdf file with your answers to the questions.

Read background material on Oscillatory Systems: Figenvalues on the next two pages. That
material will help you understand how to set up a coupled system of second order ODEs
to model a spring mass system. The second order ODEs in (2.26) can be converted to
a first order ODE system of the form % = Au where u = u(t) € R* has components
u = [X1,Y1, Xy, Y5|" where Y, = X} is the time derivative of X;. Here A is a 4 x 4
matrix. Similarly, a spring mass system with N masses will result in a first order ODE with
u=nu(t) e R?,

Do Exercises 5.1.22 and 5.1.23 (scanned from a different book). The material summarized
above will help you derive first order systems of ODE’s that model these two spring mass
systems. Make sure you comment on whether the results you obtain are physically reasonable
or not. If they do not look reasonable maybe you have a bug!

These two exercises refer to FExercises 5.1.19 and 5.1.20 and Example 1.2.10 scans of which

are included here for your convenience.



plications and questions

the flexibilities k, all equal 1 and that the

a
: that = —10. Pplie
() Suppos blem 8 X 10, fo = 1 and /s 224) | gseﬁMATLAB;‘
forces are =l ;hé‘ti‘\e five linear equations (2.24) 1 the five upkp, "
to solv

Owns :
cain the displacements d. |

] S
2.5 OSCILLATORY SYSTEMS: EIGENVALUE

N . cation areas exhibit oscillations: Airplane wiy

b phen?ﬁ?iﬁﬁ?s;uzsﬁ:fe-in the wind; the economy oscillates (betw%sé
F’ndgf?S, an d?eﬂation for example); and so on. It is opwowsl},f important to unde;.
ls?gsg(t)gea;ualitative l;ehavior of these oscillations: Wwill the wing fall off, the bridge
collapse, the building topple, the economy crugnble?' The study of mr::dels of thege
phenomena usually leads to matrix problems 1n which we need to discover whey

certain matrices depending on parameters will be singular.
Two Masses Suspended and Coupled by Springs

As an illustration of oscillatory phenomena, we consider the motion of two masses
coupled by one spring and suspended from the ceiling by another, as in the diagram
below; the springs are assumed to have negligible weights. The two weights have
masses m, and m,. The two horizontal lines marked “Rest” indicate the position

of the masses at rest, that is, where the restoring forces of the springs and the force
of gravity are in perfect balance.
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25 / Oscillatory systems: eigenvalues 61

force exerte'd‘ b}f the second spring, which has been stretched by X,(t) — X,(?)
beyond equilibrium; note that the force of gravity has been accounted for in the
rest positions of the masses. The force on the second mass is the upward force
exerted by the second spring,

We suppose that the displacements involved are small enough that Hooke’s
law is valid for the springs: The restoring force for each spring is equal to a constant
k; times the amount by which the spring is stretched. Recalling Newton’s law that
force equals mass times resulting acceleration and recalling that acceleration is
the second derivative of displacement X (£}, we obtain the mathematical model of
our system:

(2.26) miXT = —k X, +ky(X, — X;)

my X5 = —ky(X, — X)),

where the primes denote differentiation with respect to t.

Our mathematical problem is to find functions X; and X, that satisfy {2.26).
Experience and intuition tell us that such systems should be oscillatory: Both
X, and X, should oscillate between positive and negative values much like the
trigonometric functions sine and cosine. Therefore, we decide to see whether we
can find solutions of (2.26) by using sines and cosines; more precisely, we seek
solutions of the form

(2.27) X,(t) =&, sin wt + n, cos wt

(2.28)

X,(t) = &, sin wt + n, cos wt,

where &, ., &,, n,, and w are constants to be determined in order that X; and
X, solve (2.26).

If we substitute into (2.26) the expressions for X; and X, in (2.27), differentiate as
required, and collect terms, we obtain

{_m1w2§1 + klél + kZél - kzéz} sin wt
+ {—mlw% + kytpy + katty — k,n,} cos wt =0 for all ¢

{—m,w2E, + k&, — kyéy} sin ot
+ {—myw*n, + kanz — kot1y} cos wt =Q for all ¢.

Now, the only way that A sin wt + B cos wt can equal zero for all ¢ is for 4 =
B = 0; this means that the expressions above inside braces {} must all equal zero:

(—myw® + ky + k;)61 + (—kz)6, =0
("kz)f1 N (—'mzwz e kz)éz =0

g
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attached to a wall by a spring,

T T as shown in
i Exercise §.1.22 Consider a cart WE in Figure.

12N
16 N/m '
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Figure 5.5 Solve for the motion of the cart_

time zero the cart is at rest at its equilibrium position x = 0, A¢ that
force of 12 newtons is applied, pushing the cart to the righ. Assu
friction is —k %(t) newtons, where k > 0. Do parts (a) through (

Moment
me that the
d) by harg,

Steag
T0!ling

(a) Sctup asystem of two first-order differential equations of the form 4 — ooy
for z1(t) = z(t) and z2(t) = (¢).

(b) Find the steady-state solution of the differential equation.

(c) Find the characteristic equation of A and solve it by the Guadratic formula t
obtain an expression (involving k) for the cigenvalues of A. '

(d) There is a critical value of k at which the

eigenvalues of A change from
to complex. Find this critical valye.

(e) Using MATLAB, solve th
k =6, (iii) k = 10, an
simply plot z1(t)
set of axes. (Do n
Comment on your
of oscillations),

¢ initial value problem for the cases (i) k = 2,0
d (iv) k = 14. Rather than reporting your o
for 0 < t < 3 for each of your four solutions on 2;5]";30
ot overlook the help given in Exercises 5.1.19 and abseﬂ“’ -,
plots (e.g. rate of decay to steady state, presence 0f 3

(f) What happens when & — 0?
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(b) Introducing the velocit

system of six first-order differential equations. Writ
= Azr -,

Yy variables x4, Ts, and xg, rewrite your system as g

€ your system in the form

() Find the Steady-state solution of the system.
@) Solve the initia] valye problem under each of the conditions listed below. In
each case plot i, Tg,

and 3 on a single set of axes for 0 <t <20, and
tomment on the plot.
(1) ky = 1, ks =0, and ks = 0.
(2) kl = 1, kg = 8, and k3 = 8.
(3) ki = 8, ko = 8, and k3 = 8,

bt
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Additional Exercises

W19 g,

o Lo Ppose A is nonsingular and has linearly independent eigenvectors vy, . . . ,
. |

Ly - :
be the nonsingular n x n matrix whose columns are v, - . . , V.

@ § -
how tha (5. 1.8) can be rewritten as z:(t) = Ve’c, where cis a column vector,

Atj . . :
At é__t_he,dldgoﬂal matrix diag{ A1, ..., At}, and el is its matrix exponential.
= diag{ehit et}
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300 EIGENVALUES AND EIGENVECTORS |

(b) Show that the general solution of & = Az — b has the form (t)

- = z_l_ J\
where z satisfies Az = b. Ve tc’

(c) To solve the initial value problem Z = Az — b with initial conditiop 5
we need to solve for the constants in the vector c. Show that ¢ cap be
by solving the system V¢ = — . Since V' is nonsingular, this syst
unique solution.

0=
Obtained
€M hag a

a

Exercise 5.1.20 Using MATLAB, work out the details of Example 5.1.13. The MATLap

command [V,D]=eig(A) returns (if possible) a matrix V' whose columns g
linearly independent eigenvectors of A and a diagoral matrix L) whose main diagong)
entries are the eigenvalues of A. Thus V and D are the same as the matrices V apg
A of the previous exercise. You may find the results of the previous exercise helpful
as you work through this exercise. Here are some sample plot commands:

t = 0:.02:1;

X = z*ones(size(t));

for §j=1:2; x = x + V(:,73) *c(j) *exp(t*D(j, J)); end

plot (t,x(1,:),t,x(2,:),’ —=")

title (' Loop Currents’)

xlabel(’time in seconds’)

yvlabel (' current in amperes’)

print
Remember that for more information on the usage of these commands, you can typ¢
help plot, help print,elc, or look in MATLAB’s help browser.

v tho
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some other means. O

It 1s easy to imagine much larger circuits with many loops. See, for example,
Exercise 1.2.19. Then imagine something much larger. If a circuit has, say, 100
loops, then it will have 100 equations in 100 unknowns.

Simple Mass-Spring Systems

In Figure 1.3 a steady force of 2 newtons is applied to a cart, pushing it to the right
and stretching the spring, which is a linear spring with a spring constant (stiffness)
4 newtons/meter. How far will the cart move before stopping at a new equilibrium
position? Here we are not studying the dynamics, that is, how the cart gets to 1ts new
equilibrium. For that we would need to know the mass of the cart and the frictional
forces in the system. Since we are asking only for the new equilibrium position, it
suffices to know the stiffness of the spring.
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SYSTEMS OF LINEAR EQUATIONS 17

2N
4 N/m —

0
00

Figure 1.3 Single cart and spring

4 N/m = m_ i
0O OO OO

Figure 1.4 System of three carts

The new equilibrium will be at the point at which the rightward force of 2 newtons
is exactly balanced by the leftward force applied by the spring. In other words, the
equilibrium position is the one at which the sum of the forces on the cart is zero. Let
z denote the (yet unknown) amount by which the cart moves to the right. Then the
restoring force of the spring is —4 newtons/meter X x meters = —4x newtons. Itis
Iegalive because it pulls the cart leftward. The equilibrium occurs when —4z+2 = 0.
Solvmg this system of one equation in one unknown, we find that ¢ = 0.5 meter.

ﬁ"a:nsle 1.2.10 Now suppose we have three masses attached' by springs as shown
s pe%ﬁr‘t:, ]].4. Let 21, x5, and z3 denote the amount by which carts 1, 2', .anfl 3,
Positon ie:;y, move when the forces are applied. For each cart 'the new equ1_11br1um
%cong cér:h?t point at which the sum of the forces on the ca1:t is zero. Consider thp
» for example. An external force of two newtons is applied, and there 18

orce of the spring to the left, and the rightward force of the spring (o

e lefiwarg
C righy , ,
8%, The amoypy by which the spring on the left is stretched is ¢ - @1 Meets.

: Uherefore

Mg, CXCTIS @ force —4 newtons/meter X (g — @) meters = —d(x2 — T1)
G

ng ‘ : : :
on the second cart, Similarfy the spring on the right applies a force of

3~z : ’ e
_ 2/ Iewtons, Thus the equilibrium equation for the second cart 18

—4(z9 ~ 1) + 4(z3 — z2)+2=0

. . 255 .'“ % A. T e x
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18 GAUSSIAN ELIMINATION AND ITS VARIANTS

or
—-—4231 + 8z — 4&273 = 2.

Similar equations apply to carts 1 and 3. Thus we obtain a system of three linear
equations in three unknowns, which we can write as a matrix equation

g —4 0 T1 1
—4 8 —4 ) = 2
0 —4 8 I3 3

Entering the matrix A and vector b into MATLAB, and using the command x = A\b
(or simply solving the system by hand) we find that

0.625
x= | 1.000
0.875

Thus the first cart is displaced to the right by a distance of 0.625 meters, for example.
The coefficient matrix A is called a stiffness matrix, because the values of its
nonzero entries are determined by the stiffnesses of the springs. [
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