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Motivation for Plasma

A Plasma is a macroscopically neutral substance containing many interacting
free electrons and ionized atoms/molecules.

It is estimated that 99% of the known universe is plasma including: stars, the
ionosphere (aurora), interstellar space, lightning, fire, ....

Applications in the semiconductor industry such as

• Etching silicon for integrated circuit
• Growing layered semiconductor material

Medical applications such as

• Sterilization of medical equipment
• Wound healing
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Spatially homogeneous Boltzmann equation

System of plasma particles can be modeled by velocity pdfs

The spatially homogeneous Boltzmann equation for the velocity pdf, f (v, t),
of a single species is

∂f

∂t
(v, t) = Q(f , f )(v, t),

where Q(f , f ) gives the rate of change of f due to collisions.

Analytical solutions
• Maxwellian
• BKW

Two approaches for numerical solutions
• Stochastic
• Deterministic

Accurate computation of low probability tails of velocity pdf
is important as high energy electrons drive chemical reactions.
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Collision operator

The rate of change of f due to Maxwell type binary collisions

Q(v, t) =
1

4π

∫
R3

∫
S2

[f (ṽ, t)f (ũ, t)− f (v, t)f (u, t)] dΘ dw.

Post collisional velocities

ṽ(v,u,Θ) =
1

2

[
(v + u) +Θ|v − u|

]
,

ũ(v,u,Θ) =
1

2

[
(v + u)−Θ|v − u|

]
,

The total collision frequency ν is given by

ν(t) =
1

4π

∫
u∈R3

∫
v∈R3

∫
Θ∈S2

f (v, t) f (u, t) dΘ dv du.
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Bird: Direct Simulation Monte Carlo (DSMC)

Allows for particle collisions, transport, chemistry, surface interactions, ....

A set of n physical particles is represented by a set of m stochastic particles,
each with weight

w =
n

m
.

Bird’s algorithm [collisions only for today]

• Choose a Poisson distributed random jump time ∆tk

• Choose 2 particles i and j at random from m particles

• Choose a direction vector, Θ, for the relative post collisional velocity, ṽi − ṽj

• Update the velocities and the velocity pdf

• Update the time: tk+1 = tk +∆tk

• Repeat the process
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Rjasanow & Wagner: Stochastic Weighted Particle Method

Variable weights to allow for more stochastic particles & accuracy in tails.

State of the system:

z(t) = {(v1(t),w1(t)), (v2(t),w2(t)), . . . , (vm(t),wm(t))},

vi is velocity and wi is weight of the i-th stochastic particle.

Need m = m(t)

The empirical measure (histogram) of the system is:

µm(t, dv) =

m(t)∑
i=1

wi (t)δvi (t)(dv)

Wagner’s convergence theorem:

µm → f as m(0) → ∞ under certain conditions on simulation set up
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Bird’s Model vs Rjasanow and Wagner’s model
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Fig: Schematic diagram of stochastic models
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A stochastic collision

During a collision between the stochastic particles only a portion,
γcoll(z ; i , j ,Θ), of physical particles undergo collisions.

Remaining particles continue with the pre-collision velocities.

The state, [Jcoll(z , i , j ,Θ)]k , of the k-th stochastic particle after a collision
between particles i and j is given by

[Jcoll(z ; i , j ,Θ)]k =



(vk ,wk), if k ≤ m, k /∈ {i , j},
(vi ,wi − γcoll(z ; i , j ,Θ)), if k = i ,

(vj ,wj − γcoll(z ; i , j ,Θ)), if k = j ,

(ṽi , γcoll(z ; i , j ,Θ)), if k = m + 1,

(ṽj , γcoll(z ; i , j ,Θ)), if k = m + 2,

resulting in a new system state with two additional particles,

z = {(v1,w1), (v2,w2), . . . , (vm+1,wm+1), (vm+2,wm+2, )}.
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Reduction process

SWPM has time complexity of O(m).

Each collision increases the number of stochastic particles by one or two.

Must periodically reduce the number of particles.

Reduction Process:

1 Cluster the stochastic particle into groups.

2 Reduction scheme: Replace each group with a smaller group.

Goal:

Reduction should preserve physically important statistical quantities:

Moments of the pdf &Tail functionals.

Tail(R) =

∫∫∫
|v|≥R

f (v) dv
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Grouping and Reduction Methods

For today’s results, group based on rectangular boxes in velocity space

Probably not best choice!

Within each group we select velocities of reduced particles so to preserve:

K1: Total mass and average velocity of group1

1 particle per group

K2: K1 + full pressure tensor2

7 particles per group

K2.5: K2 + M300, M030 & M003

10 particles per group

K3: All moments of order less than or equal to three

27 particles per group

To what degree are
even higher order moments and tail functionals preserved?

1Rjasanow&Wagner,2005
2Lama, Zweck & Goeckner, 2020
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Moment Preservation as a Linear System

Given original group of Norig particles, compute Nmom moments

Mkxkykz =

Norig∑
j=1

wj v
kx
x,j v

ky
y ,j v

kz
z,j , of order kx + ky + kz = K (1)

Form Nmom × 1-moment vector µ whose i-th entry is Mkxkykz .
Goal: Find reduced group of Nred particles with velocities, vj = (vx,j , vy ,j , vz,j),
and weights, wj so that for all kx , ky , kz ,

Mkxkykz =

Nred∑
j=1

wj v
kx
x,j v

ky
y ,j v

kz
z,j . (2)

Recast (2) as Nmom × Nred linear system

Pw = µ (3)

where w is Nred × 1 weight vector and P is Nmom × Nred progenitor matrix

Pij = vkx
x,j v

ky
y ,j v

kz
z,j . (4)
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Preservation of all 1st-order moments, K = 1

Given
µ =

[
M000 M100 M010 M001

]T
need at least 4 reduced particles (for square system):

M000 = w0 + wx + wy + wz ,M100

M010

M001

 = w0v0 + wxvx + wyvy + wzvz ,

For P to be upper triangular, choose v0 = 0 and

vx =
[
vx 0 0

]T
, vy =

[
0 vy 0

]T
, vz =

[
0 0 vz

]T
,

P =


1 1 1 1
0 vx 0 0
0 0 vy 0
0 0 0 vz

 , which is invertible if vx/y/z ̸= 0.
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Preservation of all 1st-order moments, K = 1

Weight positivity

To ensure that the weights are positive, choose signs of velocities to match
those of moments:

sign (vx) = sign (M100) , sign (vy ) = sign (M010) , sign (vy ) = sign (M001) .

Finally, the velocities can be scaled so that

w0 = M000 −
(

vx
M100

+
vy

M010
+

vz
M001

)
> 0. (5)
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Preservation of all moments of order K ≤ 2

Order the 10 components of the moment vector so that

µT =
[
µ0 µT

x µT
y µT

z µxy µxz µyz

]
,

where µ0 = M000,

µx =

[
M100

M200

]
, µy =

[
M010

M020

]
, µz =

[
M001

M002

]
,

µxy = M110, µxz = M101, µyz = M011.

Choose the 10 reduced particle velocities0 vx,2 vx,3 0 0 0 0 vx,8 vx,9 0
0 0 0 vy ,4 vy ,5 0 0 vy ,8 0 vy ,10
0 0 0 0 0 vz,6 vz,7 0 vz,9 vz,10


to obtain an upper trianglular P.
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Preservation of all moments of order K ≤ 2



1 1 1 1 1 1 1
0 Px,x 0 0 Px,xy Px,xz 0
0 0 Py ,y 0 Py ,xy 0 Py ,yz

0 0 0 Pz,z 0 Pz,xz Pz,yz

0 0 0 0 Pxy ,xy 0 0
0 0 0 0 0 Pxz,xz 0
0 0 0 0 0 0 Pyz,yz





w0

wx

wy

wz

wxy

wxz

wyz


=



µ0

µx

µy

µz

µxy

µxz

µyz


,

where Pxy ,xy = vx,8vy ,8 and

Px,x =

[
vx,2 vx,3
v2
x,2 v2

x,3

]
,

Choosing v∗,j ̸= 0 and

vx,3 ̸= vx,2, vy ,5 ̸= vy ,4, vz,7 ̸= vz,6,

P is invertible.
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Preservation of all moments of order K ≤ 2: 2D Case

Weight positivity

Working in frame in which covariance matrix is identity, system reduces to
1 1 1 1 1 1
0 vx,1 vx,2 0 0 vx,5
0 v2

x,1 v2
x,2 0 0 v2

x,5

0 0 0 vy ,3 vy ,4 vy ,5
0 0 0 v2

y ,3 v2
y ,4 v2

y ,5

0 0 0 0 0 vx,5vy ,5




w0

w1

w2

w3

w4

w5

 =


M000

M100

M200

M010

M020

M110

 =


1
0
1
0
1
0

 . (6)

Set w5 = 0 and

vx,1 = vy ,3 = s and vx,2 = vy ,4 = −s

gives

w =
[
1− 2

s2
1
2s2

1
2s2

1
2s2

1
2s2

]T
,

which has positive components, provided s >
√
2.

Similar approach with extra tricks solves case K = 3 in 3D.
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Importance sampling pdf prior to reduction

Rather than simulating entire SWPM process:

We sample from Maxwellian-like distributions, f , with skewness and kurtosis.

Then group and reduce.

Quantifies uncertainty due to particle grouping and reduction processes.

DSMC-like system:

Sample m particle velocities via standard CDF method

Choose constant weights

SWPM-like system:

Sample m particle velocities uniformly distributed in a ball of radius vR = 7.

Choose weights so that µm ≈ f

To what extent is uncertainty of the reduced system
on the order of the uncertainty prior to reduction?
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Moments and tail functionals prior to reduction

Figure: Integrate pdf (dashes), SMC-like (open squares) and SWPM-like (closed circles).

Quantifies initial uncertainty of moments and tail functionals
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Absolute error in the moments for reduction schemes

Moment to be preserved are preserved to within numerical error.

Best to preserve the full third-order tensor moment.

Errors in non-preserved moments are smaller for larger Norig and ngroups.
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Relative error in the moments with minimal group sizes

Smaller group sizes reduce group radii and increase accuracy of reduction

Figure: Relative error in moments for the K2 (left panel) & K3 (right panel) schemes
when Ngroup is set to minimum values of Ngroup = Nred + 1 = 8 and 27, respectively.
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Tail Functionals for different reduction schemes

Use K1 if goal is to simply preserve tail functionals.

Use K2 or K3 if goal is to preserve moments and tail functionals.
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