A Menagerie of Mathematical Models Active Learning Project #8 Hills and Valleys

Figure 1: Left: Blue model. Right: Yellow model.

Assessment: If this project is being assessed, **do one of the two parts**. Your small group needs to show the Teaching Assistant (TA) your answers to the questions labeled **TACheck**. Total Points: 10.

The point of this project is to show that functions, z = f(x, y) of two variables can have properties that functions, y = f(x), of one variable cannot.

1. The blue model is the graph of the function

$$z = f(x, y) = -(x^2 - c^2)^2 - (x^2y - cx - c)^2$$
, for some constant $c \neq 0$. (1)

For the model we chose the constant to be c = 10.

(a) TACheck [1pt]. Use the Chain Rule from Calculus I to show that

$$f_x = -4x(x^2 - c^2) - 2(x^2y - cx - c)(2xy - c),$$
 (2)

$$f_{y} = -2x^{2}(x^{2}y - cx - c). {3}$$

(b) **TACheck [2pts].** Check that the following two points are critical points of *f*:

$$(x_1, y_1) = (c, 1 + \frac{1}{c})$$
 and $(x_2, y_2) = (-c, -1 + \frac{1}{c}).$ (4)

(c) **TACheck [2pts].** By solving the critical point equations, (2) and (3), show that (x_1, y_1) and (x_2, y_2) are the *only* critical points of f.

- (d) **TACheck [2pts].** Identify the locations of the two critical points of *f* on the model and use the model to classify them as local maxima, local minima, or saddle points.
- (e) The formulae for the second derivatives of f are a little nasty. So it is a pain to use the Second Derivative Test to classify the critical points of f. However, the function f has some nice properties that enable us to show that the function f attains its absolute maximum value at both critical points. Consequently, these critical points must also be *local* maxima of f!
 - i. **TACheck [1pt].** What is the largest possible value that f could take?
 - ii. **TACheck [1pt].** Explain why f attains this largest possible value at (x_1, y_1) and at (x_2, y_2) .
- (f) **TACheck [1pt].** Let y = f(x) be a differentiable function whose domain is the entire real line. Is it possible for f to have exactly two critical points, both of which are local maxima?
- 2. The yellow model is the graph of the function

$$z = g(x, y) = 3xe^{y} - x^{3} - e^{2y}.$$
 (5)

- (a) **TACheck [1pt].** As best you can, identify the locations of the critical points of *g* on the model and use the model to classify them as local maxima, local minima, or saddle points.
- (b) **TACheck [4pts].** Use multivariable calculus to calculate the critical points of the function *g* and use the Second Derivative Test to classify them.
- (c) **TACheck [1pt].** By examining the model explain why it appears that g does not have an absolute maximum on \mathbb{R}^2 .
- (d) **TACheck [3pts].** Do a calculation to show that g does not have an absolute maximum on \mathbb{R}^2 . **Hint:** Let $h(y) = g(-e^{-y}, y)$. Work out the formula for h and show that h does not have an absolute maximum on \mathbb{R} . Explain why this tells us that g does not have an absolute maximum on \mathbb{R}^2 . Sketch the graph of $x = -e^{-y}$ in the (x, y)-plane and identify where it is on the model.
- (e) **TACheck [1pt].** Let y = f(x) be a differentiable function whose domain is the entire real line. Is it possible for f to have exactly one critical point which is a local maximum but not a global maximum?